Minggu, 20 April 2014

PRINSIP DASAR TURBIN UAP

2.1 Tinjauan Secara Umum 

bladesSalah satu jenis penggerak mula yang dipakai di industri adalah mesin kalor, yaitu suatu mesin yang menggunakan energi panas untuk melakukan kerja mekanik atau suatu mesin di mana energi panas dapat dirubah menjadi energi mekanik.
Energi itu sendiri dapat diperoleh akibat pembakaran bahan bakar, fisi bahan bakar nuklir atau proses yang lain.
Dilihat dari cara memperoleh panas, maka  mesin  kalor  dapat  dibagi atas dua bagian , yaitu :   
a. Mesin pembakaran luar (External combustion engine).
    Ini berarti bahwa panas diperoleh dari proses pembakaran di luar mesin sendiri.
    Contoh : mesin uap dan turbin uap.          
b. Mesin pembakaran dalam (Internal combustion engine).
    Ini  berarti bahwa panas diperoleh dari proses pembakaran di dalam mesin itu sendiri.
    Contoh : motor bensin, motor diesel, motor gas dan turbin gas.
Turbin atau turbine berasal dari kata turbo (Yunani) yang artinya putar. Dalam hal ini turbin mempunyai komponen utama berupa sudu-sudu atau kincir yang digerakan oleh aliran uap, gas atau air dan tidak ada torak yang digerakan oleh aliran. Aliran, gas air atau angin dapat terjadi di alam sebagai aliran udara, air dan berupa aliran sungai atau air terjun.
Turbin yang bekerja dengan aliran-aliran alamiah ini dipakai bila ada tenaga aliran atau energi alam tersedia. Akan tetapi aliran tersebut dapat kita buat misalnya uap dan gas.
Bilamana fluida kerjanya adalah uap, maka dinamai turbin uap atau steam turbines, yaitu pesawat penggerak yang mengubah energi potensial uap menjadi energi kinetik, yang selanjutnya diubah menjadi energi mekanis dalam bentuk putaran poros turbin.
Turbin uap pertama kali dibuat oleh William Avery (Amerika) pada 1831 untuk menggerakan mesin gergaji. Selanjutnya teori berkembang mengikuti aplikasinya. Parsons, Charles G. Curtis dan Carl Gustav Patrik mengembangkannya dengan membuat turbin-turbin uap yang lain, dengan susunan sudu lebih dari satu baris.

2.2  Prinsip Kerja dan Klasifikasi Turbin Uap

2.2.1  Prinsip Kerja Turbin Uap
Skema dari sebuah sistem turbin uap tertutup dapat dilihat pada gambar 1. Sistem tersebut terdiri dari beberapa komponen utama yaitu ketel uap, turbin yang menggerakan beban,kondensor dan pompa air ketel. Dengan demikian turbin hanya merupakan salah satu komponen saja dari suatu sistem tenaga. Di dalam  turbin, tekanan dan temperatur uap turun, selama itu uap meninggalkan turbin dan masuk ke dalam kondensor. Kondensor adalah suatu alat yang berfungsi untuk mengembunkan uap dengan jalan mendinginkannya.
Air pengembunan yang terjadi di dalam kondensor disebut kondensat. Dengan pertolongan sebuah pompa air dari kondensor dialirkan ke ketel uap. Pompa tersebut biasanya diletakkan lebih rendah atau di bawah kondensor, oleh karena pada umumnya kondensor bekerja dengan tekanan vakum. Oleh karena ada kemungkinan kebocoran uap, maka perlu dimasukkan air tambahan (make up water), sebanyak 3-4 % kapasitas produksi uap atau lebih, sesuai dengan sistem yang dipergunakan. 
Turbin Uap Tertutup   
Siklus ideal dari suatu sistem turbin uap sederhana adalah siklus Rankine tertutup yang dapat digambar pada diagram T vs s atau pada diagram h vs s sperti terlihat pada gambar 2 dan 3.
Diagram T-S
Diagram T-S
Daerah dibawah garis lengkung k - K - k’ pada diagram T - s dan h - s merupakan daerah campuran fasa cair dan uap. Uap di dalam daerah tersebut biasanya juga dinamakan basah. Garis k - K dinamai garis cair (jenuh), dimana pada dan di sebelah kiri daerah tersebut air ada di fasa cair. Sedangkan garis K - k’  dinamai garis uap jenuh, di mana pada dan di sebelah kanan garis tersebut air ada dalam fasa uap (gas).
Uap di mana temperatur dan tekanan pada titik tersebut berturut-turut dinamai temperatur kritis dan tekanan kritis.
Pada titik kritis keadaan cair jenuh dan uap jenuh adalah identik. Untuk air, tekanan kritisnya Pc = 218,3 atm (3206,2 psia) dan temperatur kritisnya adalah Tc = 374,2 oC  (7045,4 oF). Pada tekanan lebih tinggi dari Pc tidak dapat diketahui dengan pasti bilamana dan di mana perubahan dari fasa cair ke fasa uap. Tetapi dalam hal tersebut biasanya dikatakan bahwa air ada dalam fasa cair apabila temperaturnya di bawah Tc dan ada dalam fasa uap apabila temperaturnya lebih tinggi dari pada Tc.
Siklus Rankine tertutup terdiri dari beberapa proses sebagai berikut :
1 ---> 2  Proses pemompaan isentropis di dalam pompa.
2 ---> 2’ ---> 3 Proses  pemasukan  kalor  atau  pemanasan  pada tekanan konstan  di dalam ketel.
3 ---> 4   Proses ekspansi isentropik di dalam turbin atau mesin uap lainnya.
4 ---> 1  Proses   pengeluaran  kalor   atau   pengembunan   pada   tekanan konstan di dalam kondensor.
Meskipun demikian, masih banyak variasi dari siklus Rankine tersebut di atas. Misalkan kemungkinan diadakannya pemanasan lanjut dari 3 ---> 3’ sehingga siklusnya menjadi 1 ---> 2 ---> 3---> 3’ ---> 4’ ---> 1.

Menurut hukum termodinamika, kerja yang dihasilkan oleh suatu proses siklus adalah sama dengan jumlah perpindahan kalor pada fluida kerja selama proses siklus tersebut berlangsung.    
Selanjutnya,secara  singkat prinsip kerja turbin uap adalah sebagai berikut:
Uap masuk ke dalam turbin melalui nosel. Di dalam nosel energi panas dari uap dirubah menjadi energi kinetis dan uap mengalami pengembangan.
Tekanan uap pada saat keluar dari nosel, lebih kecil dari pada saat masuk ke dalam nosel, akan tetapi sebaliknya kecepatan uap keluar nosel lebih besar dari pada saat masuk kedalam nosel.
Uap yang memancar keluar dari nosel diarahkan ke sudu-sudu turbin yang berbentuk lengkung dan dipasang di sekeliling roda turbin. Uap yang mengalir melalui celah-celah di antara sudu-sudu turbin itu dibelokkan arahnya mengikuti lengkungan dari sudu turbin. perubahan kecepatan uap ini menimbulkan  gaya yang mendorong sudu dan kemudian memutar roda dan poros turbin.
Jika uap masih mempunyai kecepatan saat meninggalkan sudu turbin, berarti hanya sebagian energi kinetis dari uap yang diambil oleh sudu-sudu turbin yang berjalan. Supaya energi kinetis yang tersisa saat meninggalkan sudu turbin dapat dimanfaatkan, maka pada turbin umumnya dipasang lebih dari satu baris sudu gerak. Sebelum memasuki baris kedua sudu gerak, arah kecepatan uap harus    dirubah lebih dahulu. Maka di antara baris pertama dan baris kedua sudu gerak dipasang satu baris sudu tetap (guide blade) yang berguna untuk mengubah arah kecepatan uap, supaya uap dapat masuk ke baris kedua sudu gerak dengan arah yang tepat.
Kecepatan uap saat meninggalkan sudu gerak yang terakhir harus dapat dibuat sekecil mungkin, agar energi kinetis yang tersedia dapat dimanfaatkan sebanyak mungkin. Dengan demikian effisiensi turbin menjadi lebih tinggi karena kehilangan energi relatif kecil.

2.2.2  Klasifikasi Turbin Uap

    Turbin uap dapat diklasifikasikan dalam kategori yang berbeda-beda, misalnya :
a. Menurut jumlah tingkat tekanan.
  • Turbin   satu  tingkat  dengan  satu  atau  lebih tingkat  kecepatan  yang biasanya berkapasitas kecil.
  • Turbin  nekatingkat  yang biasanya dalam jangka kapasitas yang luas dari yang kecil hingga yang besar.    
b. Menurut arah aliran uap.
  • Aksial dan radial.
c. Menurut jumlah silinder.
  • Tunggal, ganda atau lebih dari dua.
d. Menurut prinsip aksi uap.
  • Turbin aksi atau turbin tekanan rata.
  • Turbin reaksi atau turbin tekanan lanjut.
e. Menurut proses penurunan kalor.
  • Turbin kondensasi.
  • Turbin tanpa kondensasi.
f. Menurut kondisi uap pada sisi masuk.
  • Turbin tekanan rendah, tekanan uap 1,2 sampai 2 ata.
  • Turbin takanan menengah, tekanan uap sampai 40 ata.
  • Turbin tekanan tinggi, tekanan uap di atas 40 ata.
  • Turbin tekanan sangat tinggi, tekanan uap 170 ata atau lebih dari temperatur diatas 550oC.
Lebih lanjut yang akan dibahas adalah turbin jenis aksi dan reaksi.

Turbin Impuls.

Schematic Diagram of Pressure-Velocity compounded Impulse Turbine
Gbr. 3 Grafik Tekanan dan Kecepatan Turbin Impuls
Pada turbin ini seluruh tekanan uap diubah menjadi kecepatan dalam satu pipa pancar, dengan kata lain uap hanya mengembang di dalam pipa pancar yang diam. Sedangkan selama melalui sudu-sudu gerak tekanan uap tetap, karena itulah maka disebut turbin tekanan rata atau tingkat kecepatan.
Keadaan aliran uap di dalam turbin tersebut di atas dapat diterangkan dengan menggunakan grafik tekanan dan kecepatan absolut seperti yang terlukis pada gambar 3 dan 4.
Dalam turbin impuls sederhana,uap diekspansikan di dalam satu nosel atau satu baris nosel yang masing-masing bekerja dengan tekanan yang sama. Dalam hal ini kecepatan uapnya naik. Setelah itu uap mengalir ke dalam baris sudu gerak dengan tekanan konstan. Tetapi kecepatan absolutnya turun karena energi kinetik uap diubah menjadi kerja memutar roda turbin.
Uap yang keluar dari turbin masih berkecepatan tinggi, oleh karena itu merupakan kerugian energi. Salah satu cara mencegah kerugian tersebut adalah dengan mengekspansikan uap secara bertahap di dalam turbin bertingkat ganda, seperti yang telah dijelaskan sebelumnya.
Walaupun uap hanya diekspansikan di dalam nosel (baris sudu tetap pertama) dan selanjutnya tekanannya konstan, turbin tersebut masih termasuk dalam golongan turbin impuls karena di dalam baris sudu gerak tidak terjadi ekspansi (penurunan tekanan). Meskipun tekanan uap di dalam sudu geraknya konstan, kecepatan absolutnya turun karena sebagian dari energi uap diubah menjadi kerja memutar roda turbin. Kecepatan uap di dalam baris sudu tetap berikutnya tidak naik karena tekanannya konstan. Dalam hal tersebut terakhir sudu tetap dibentuk sedemikian rupa sehingga tidak terjadi ekspansi.
Turbines impulse v reaction
Gbr 4. Perbedaan Turbin Impuls dan Reaksi (wikipedia)

Turbin Reaksi.

Schematic Diagram of Pressure compounded Reaction Turbine
Gbr. 5 Grafik Tekanan dan Kecepatan Turbin Reaksi
Pada turbin reaksi, proses ekspansi  (penurunan tekanan)  terjadi  baik di dalam baris sudu tetap maupun sudu geraknya. Turbin reaksi juga dinamai turbin Parsons sesuai dengan nama pembuatnya yang pertama, yaitu Sir Charles Parsons. Grafik tekanan dan kecepatan absolut dari uap di dalam turbin reaksi dapat dilihat pada gambar 4 dan 5.
Dalam hal ini baris sudu tetap maupun sudu geraknya berfungsi sebagai nosel, sehingga kecepatan relatif uap keluar setiap sudu lebih besar dari kecepatan relatif uap masuk sudu yang bersangkutan. Meskipun demikian, kecepatan absolut uap keluar sudu gerak lebih kecil dari pada  kecepatan absolut uap masuk sudu gerak yang bersangkutan, oleh karena sebagian energi kinetiknya diubah menjadi kerja memutar roda turbin.
Adapun sebagai pendukung pusat listrik tenaga uap ini digunakan beberapa alat bantu (auxiliary equipments) untuk membantu proses siklus turbin uap berjalan dengan baik, seperti :
  • Sistem pelumas (lube oil system).
  • Sistem bahan bakar (fuel system).
  • Sistem pendingin (cooler system).
  • Sistem udara kontrol (air control system).
  • Sistem udara servis (air service system).
  • Sistem hidrolik (hydraulic system).
  • Sistem udara tekan (air pressure system).
  • Sistem udara pengkabutan (atomizing air system).

Daftar Pustaka

  1. Arismunandar Wiranto, Penggerak Mula Turbin, Penerbit ITB, Bandung 1988.
  2. Shlyakin P., Steam Turbines, Theori And Design, Foreign Language House, Moscow.
  3. Stodola A., Steam and Gas Turbines, Vol.I, Mc. Graw Hill Book Company Inc.,New Y

TURBIN UAP

BAB I
PENDAHULUAN

A.  Latar Belakang
                Turbin merupakan sebuah alat yang salah satunya digunakan untuk membangkitkan suatu energi. Di Indonesia telah tersebar berbagai macam turbin, mulai dari turbin gas, turbin air dan turbin uap. Turbin sangat membantu dalam kehidupan sehari-hari kita, salah satunya untuk memenuhi kebutuhan kita yang tidak lepas dari alat tersebut, yaitu listrik. Dengan turbin kita dapat melakukan kegiatan malam tanpa harus dalam kondisi gelap. Kegiatan malam akan berjalan lancar dengan adanya listrik yang tidak lepas dari turbin tersebut.
Semakin banyaknya turbin dan pesatnya perkembangan turbin tersebut, kini turbin tak asing lagi. Segala macam cara dilakukan untuk memodifikasi kembali turbin tersebut hanya untuk meningkatkan kenyamanan bagi pemakai, baik individu maupun kelompok. Terlebih lagi dengan adanya perkembangan teknologi saat ini, proses pemodifikasian turbin tersebut menjadi lebih mudah dilakukan.
Dengan adanya berbagi macam turbin tersebut yang telah tersebar hingga dipelosok Indonesia, maka kami berupaya untuk menulis sebuah makalah yang menyangkut permasalahan tersebut yaitu Turbin Uap.

B.  Rumusan Masalah
            Berdasarkan latar belakang masalah di atas, penulis merumuskan rumusan masalah sebagai berikut.
1.      Apa sajakah jenis-jenis uap yang ada?
2.      Apa itu turbin uap?
3.      Komponen apa saja yang terdapat pada turbin uap?
4.      Bagaimana prinsip kerja turbin uap?
5.      Apa sajakah jenis-jenis turbin uap itu?

C.  Tujuan Penulisan Makalah
                Tujuan dari penulisan makalah ini adalah sebagai berikut :
1.      Dapat menentukan macam-macam turbin yang biasa dipakai sehari-hari.
2.      Mengidentifikasikan definisi dari turbin uap.
3.      Menentukan komponen-komponen dari turbin uap.
4.      Menjelaskan cara kerja dari turbin uap.

D.  Manfaat Penulisan Makalah
            Dalam pelaksanaan penelitian ini, diharapkan dapat memperoleh beberapa manfaat. Adapun manfaat yang diperoleh adalah sebagai berikut:
1). Bagi Penulis
Menambah wawasan, pengalaman dalam melaksanakan pengalaman dalam penulisan makalah
2). Bagi Pembaca
Sebagai media informasi agar pembaca dapat mengenal turbin uap

E.  Metode Penulisan Makalah
            Makalah ini disusun dengan menggunakan metode, yaitu
·         Studi Pustaka
Informasi-informasi ini kami dapat dengan cara menggali informasi dari buku-buku dan media-media lain yang ada


BAB II
PEMBAHASAN

A.  Jenis-jenis Uap
            Proses pembentukan uap terbagi atas dua jenis, yaitu :
1.   Uap air
yaitu uap yang terbentuk diatas permukaan air sebagai akibat dari penurunan tekanan di atas permukaan air sampai tekanan penguapan yang sesuai dengan temperatur permukaan air tersebut pada titik didih dan pada tekanan di bawah tekanan atmosfir bumi. Penurunan tekanan ini diantaranya disebabkan karena adanya tekanan uap jenuh yang sesuai dengan temperatur permukaan air maka akan terjadi penguapan.
2.   Uap panas
yaitu uap yang terbentuk akibat mendidihnya air , aliran mendidih bila tekanan dan temperatur berada pada kondisi didih. Misalnya bila air tekanan 1 bar maka air tersebut akan mendidih pada suhu didih (±99,630 C).
Uap yang terbentuk pada tekanan dan temperatur didih disebut uap jenuh saturasi (saturated steam). Apabila uap jenuh dipanaskan pada tekanan tetap, maka uap akan mendapat pemanasan lanjut (temperatur naik). Uap yang demikian disebut uap panas lanjut (uap adi panas) atau superheated steam.
Menurut keadaannya uap ada tiga jenis, yaitu :
Ø  Uap jenuh
Uap jenuh merupakan uap yang tidak mengandung bagian-bagian air yang lepas dimana pada tekanan tertentu berlaku suhu tertentu.
Ø  Uap kering
Uap kering merupakan uap yang didapat dengan pemanas lanjut dari uap jenuh dimana pada tekanan terbentuk dan dapat diperoleh beberapa jenis uap kering dengan suhu yang berlainan.
Ø  Uap basah
Uap basah merupakan uap jenuh yang bercampur dengan bagian-bagian air yang halus yang temperaturnya sama.


B.  Pengertian Turbin Uap
            Istilah turbin berasal dari bahasa latin yaitu ”turbo” yang berarti putar. Karena energi yang digunakan untuk memutar poros turbin adalah energi potensial fluida maka turbin sendiri termasuk ke dalam golongan mesin-mesin fluida.
Mesin–mesin fluida adalah mesin yang berfungsi mengubah energi mekanis pada poros menjadi energi potensial fluida atau sebaliknya, yaitu mengubah energi potensial fluida menjadi energi mekanis pada poros.
Secara umum mesin fluida dapat digolongkan menjadi dua golongan besar, yaitu:
1. Mesin kerja, adalah mesin fluida yang berfungsi mengubah energi mekanis pada poros menjadi energi potensial fluida, misalnya : pompa, kompresor, blower, dan lain-lain.
2. Mesin tenaga, adalah mesin fluida yang berfungsi mengubah energi potensial fluida menjadi energi mekanis pada poros, misalnya : kincir angin, turbin air, turbin gas, dan turbin uap.
                Turbin kukus (uap air) adalah suatu penggerak mula yang mengubah energi potensial kukus menjadi energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan roda gigi reduksi, dihubungkan dengan mekanisme yang digerakkan. Tergantung pada jenis mekanisme yan digerakkan, turbin kukus dapat dipergunakan pada berbagai bidang industri, untuk pembangkit tenaga listrik, dan untuk transportasi.
Ide turbin kukus ini sudah lama. Sudah umum diketahui bahwa kira-kira tahun 120 S.M. Hero Alexandera membuat prototipe turbin yang pertama yang bekerja berdasarkan prinsip reaksi. Alat ini yang menjelma menjadi instalasi tenaga kukus yang primitif
Turbin uap (kukus) secara umum diklasifikasikan kedalam tiga jenis impuls, dan gabungan (impuls-reaksi), yang tergantung pada cara perolehan perubahan energi potensial menjadi energi kinetik semburan kukus.

C.  Komponen-komponen Turbin Uap
            Komponen-komponen utama pada turbin uap yaitu
-          Cassing
Adalah sebagai penutup (rumah) bagian-bagian utama turbin.
-          Rotor
Adalah bagian turbin yang berputar terdiri dari:
1)      Poros
Berfungsi sebagai komponen utama tempat dipasangnya cakram-cakram sepanjang sumbu.
2)      Sudu turbin atau deretan sudu
Berfungsi sebagai alat yang menerima gaya dari energi kinetik uap melalui nosel.
3)      Cakram
Berfungsi sebagai tempat sudu-sudu dipasang secara radial pada poros.
-          Nosel
Berfungsi sebagai media ekspansi uap yang merubah energi potensial menjadi energi kinetik.
-          Bantalan (bearing)
Merupakan bagian yang berfungsi uuntuk menyokong kedua ujung poros dan banyak menerima beban.
-          Perapat (seal)
Berfungsi untuk mencegah kebocoran uap, perapatan ini terpasang mengelilingi poros. Perapat yang digunakan adalah :
1.      Labyrinth packing
2.      Gland packing
-          Kopling
Berfungsi sebagai penghubung antara mekanisme turbin uap dengan mekanisme yang digerakkan.

D.   Prinsip Kerja Turbin Uap
            Turbin uap terdiri dari sebuah cakram yang dikelilingi oleh daun-daun cakram yang disebut sudu-sudu. Sudu-sudu ini berputar karena tiupan dari uap bertekanan yang berasal dari ketel uap, yang telah dipanasi terdahulu dengan menggunakan bahan bakar padat, cair dan gas seperti yang digunakan di PT. Toba Pulp Lestari, Tbk.
Uap tersebut kemudian dibagi dengan menggunakan control valve yang akan dipakai untuk memutar turbin yang dikopelkan langsung dengan pompa dan juga sama halnya dikopel dengan sebuah generator singkron untuk menghasilkan energi listrik.
Setelah melewati turbin uap, uap yang bertekanan dan bertemperatur tinggi tadi muncul menjadi uap bertekanan rendah. Panas yang sudah diserap oleh kondensor menyebabkan uap berubah menjadi air yang kemudian dipompakan kembali menuju boiler. Sisa panas dibuang oleh kondensor mencapai setengah jumlah panas semula yang masuk. Hal ini mengakibatkan efisisensi thermodhinamika  suatu turbin uap bernilai lebih kecil dari 50%. Turbin uap yang modern mempunyai temperatur boiler sekitar 5000C sampai 6000C dan temperatur kondensor 200C sampai 300C. 
( Shlyakhin,P: Turbin uap. Hal 12).

D.1  Asas Impuls dan Reaksi
Turbin adalah mesin rotari yang bekerja karena terjadi perubahan energi kinetik uap menjadi putaran poros turbin. Proses perubahan itu terjadi pada sudu-sudu turbin. Sebagai perbandingan dengan mesin torak yang bekerja karena ekpansi energi panas gas atau uap di dalam silinder yang mendorong torak untuk bergerak bolak-balik. Pada dasarnya, prinsip kerja mesin torak dengan turbin uap adalah sama. Fluida gas dengan energi potensial yang besar berekspansi sehingga mempunyai energi kinetik tinggi yang akan medorong torak atau sudu, karena dorongan atau tumbukan tersebut, torak atau sudu kemudian bergerak. Proses tumbukan inilah yang dinamakan dengan Impuls.
Azas impuls dapat dijelaskan dengan metode sebagai berikut. Adalah sebuah pelat yang ditumbuk dengan fluida gas berkecepatan Vs, dan laju massa m, karena pelat itu beroda sehingga bergerak dengan kecepatan Vb. Dari dua model di atas, dapat dilihat bahwa model sudu mempunyai daya yang lebih besar pada kecepatan dan laju massa fluida gas yang sama.
Maka dengan alasan tersebut, bentuk sudu dianggap yang paling efisien untuk diterapkan pada turbin uap atau jenis turbin lainnya seperi turbin gas dan air. Penerapan model sudu tersebut di atas pada turbin uap, yaitu menata sudu sudut tersebut sebaris mengelilingi roda jalan atau poros turbin uap, sehingga terjadi keseimbangan gaya.

Perbedaan turbin  dan reaksi dari segi aliran

Model turbin impuls dalam sejarahnya sudah pernah dibuat oleh Branca. Prinsip kerjanya adalah dengan menyemburkan uap berkecapatan tinggi melalui nosel ke sudu-sudu impuls pada roda jalan. Akibat adanya tumbukan antara semburan gas dengan sudu-sudu jalan turbin impuls, poros turbin menjadi berputar.
Berbeda dengan azas impuls, azas reaksi untuk sebagaian orang lebih sulit dipahami. Untuk menggambarkan azas reaksi bekerja pada gambar adalah model jet uap dari Newton.
Semburan uap dari tabung mempunyai energi kinetik yang besar sehingga sepeda akan bergerak ke kiri. Dari hal tersebut dapat dipahami bahwa mesin tersebut bekerja dengan azas reaksi, yaitu semburan uap melakukan aksi sehingga timbul reaksi pada sepeda untuk begerak melawan aksi.

E.  Klasifikasi Turbin Uap
            Untuk memudahkan identifikasi terhadap turbin uap, maka turbin uap diklasifikasikan sebagai berikut :
1.      Menurut jumlah tingkat tekanan
a)      Turbin satu tingkat yang memiliki kapasitas tenaga kecil, biasanya digunakan untuk menggerakkan kompresor, pompa, dan mesin-mesin lainnya yang kapasitas tenaganya kecil.
b)      Turbin bertingkat banyak (neka tingkat), yaitu turbin yang dibuat untuk kapasitas tenaga dari kecil kepada yang besar dan biasanya terdiri dari susunan beberapa nosel dan beberapa cakram yang ditempatkan berurutan dan berputar pada satu poros yang sama.
2.      Menurut arah aliran uap
a)      Turbin aksial, yang uapnya mengalir dengan arah yang sejajar terhadap poros turbin.
b)      Turbin radial, yang arah aliran uapnya tegak lurus terhadap poros turbin.
3.      Menurut jumlah silinder
a)      turbin silinder tunggal
b)      turbin silinder ganda
c)      turbin tiga silinder
d)     turbin empat silinder
4.      Menurut kondisi uap yang digunakan
a)      Turbin tekanan lawan, yaitu bila tekanan uap bekas sama dengan tekanan uap yang dibutuhkan untuk keperluan proses kegiatan pabrik. Turbin ini tidak mengalami kondensasi uap bekas.
b)      Turbin kondensasi langsung, yaitu turbin yang mengondensasikan uap bekasnya langsung ke dalam kondensor, guna mendapatkan air kondensat untuk pengisi air umpan ketel.
c)      Turbin ekstraksi dengan tekanan lawan, dimana uap bekas digunakan untuk keperluan proses.
d)     Turbin ekstraksi dengan kondensasi, dimana sebagian uapnya dipakai untuk proses dan sebagian lagi untuk penyediaan kondensat air pengisi ketel uap.
e)      Turbin kondensasi dengan ekstraksi ganda, uap bekas dari turbin dipakai untuk kebutuhan beberapa tingkat ekstraksi da sisanya dijadikan kondensasi dalam kondensor untuk kebutuhan air pengisi ketel uap.

f)       Turbin non kondensasi dengan aliran langsung dan tanpa ada ekstraksi serta kondensasi, uap bekas dibuang ke udara luar dengan tekanan lawan sama atau melebihi dari 1 atm.
g)      Turbin non kondensasi dengan ekstraksi, uap bekas tidak dikondensasikan, hanya digunakan untuk proses.
5.      Menurut kondisi uap yang masuk ke dalam turbin
a)      Turbin tekanan rendah dimana tekanan uapnya 2 kg/cm2
b)      Turbin tekanan menengah, tekanan uap sampai dengan 40 kg/cm2
c)      Turbin tekanan tinggi, tekanan uap sampai dengan 170 kg/cm2
d)     Tubin tekanan sangat tinggi, tekanan uap di atas 170 kg/cm2
e)      Turbin adikritis, turbin uap yang beroperasi dengan tekanan uap di atas 225 kg/cm2.
6.      Menurut prinsip aksi uap
a)      Turbin impuls, yang energi potensial uapnya diubah menjadi energi kinetik di dalam nosel atau laluan yang dilewati oleh sudu-sudu gerak,lalu energi kinetik ini diubah menjadi energi mekanik pada poros turbin.
b)      Turbin reaksi aksial, yang ekspansi uap diantara laluan sudu, baik sudu pengarah maupun sudu gerak tiap-tiap tingkat langsung pada derajat yang sama.
7.      Menurut sistem pemanas ulang uap
a)      Turbin uap dengan pemanas ulang tunggal
b)      Turbin uap dengan pemanas ulang ganda
8.      Menurut lingkungan pengoperasiannya
a)      Turbin darat, biasa terdapat pada industri atau PLTU untuk    menggerakkan generator
b)      Turbin yang dioperasikan di kapal.
9.      Menurut arah aliran uap
a)      Turbin aksial, Fluida kerja mengalir dalam arah yang sejajar terhadap sumbu turbin
b)      Turbin radial, Fluida kerja mengalir dalam arah yang tegak lurus terhadap sumbu turbin.


10.  Menurut prinsip aksi uap
a)      Turbin impuls, Energi potensial uap diubah menjadi energi kinetik di dalam nosel.
            Adapun turbin impuls mengubah energi potensial uapnya menjadi energi kinetik didalam nosel (yang dibentuk oleh sudu-sudu diam yang berdekatan). Nosel diarahkan kepada sudu gerak. Didalam sudu-sudu gerak, energi kinetik diubah menjadi energi mekanis. Energi potensial uap berupa ekspansi uap, yang diperoleh dari perubahan tekanan awal hingga tekanan akhirnya di dalam sebuah nosel atau dalam satu grup nosel yang ditempatkan didepan sudu-sudu cakram yang berputar. Penurunan tekanan uap didalam nosel diikuti dengan penurunan kandungan kalornya yang terjadi didalam nosel.  Hal ini menyebabkan naiknya kecepatan uap yang keluar dari nosel (energi kinetik). Kemudian energi kecepatan semburan uap yang keluar dari nosel yang diarahkan kepada sudu gerak (sudu-sudu cakram yang berputar) memberikan gaya impuls pada-pada sudu gerak sehingga menyebabkan sudu-sudu gerak berputar (melakukan kerja mekanis).
Atau bisa dafahami secara sederhana pronsip kerja dari turbin impuls yaitu turbin yang proses ekspansi lengkap uapnya hanya terjadi pada kanal diam (nosel) saja, dan energi kecepatan diubah menjadi kerja mekanis pada sudu-sudu turbin. Kecepatan uap yang keluar dari turbin jenis ini bisa mencapai 1200/detik. Turbin jenis ini pertama kali dibuat oleh de Laval, yang mana turbin ini mampu beroperasi pada putaran 30.000rpm. Pada aplikasinya turbin impuls ini dilengkapi dengan roda gigi reduksi untuk memindahkan momen putar ke mekanisme yang akan digerakkan seperti generator listrik.

b)      Turbin reaksi, Ekspansi uap terjadi pada sudu pengarah dan sudu gerak.
            Turbin reaksi yaitu turbin yang ekspansi uapnya tidak hanya terjadi pada laluan-laluan sudu pengarah (nosel) yang tetap saja tetapi juga terjadi pada laluan sudu gerak (sudu-sudu cakram yang berputar), sehingga terjadi penurunan keseluruhan kandungan kalor pada semua tingkat sehingga terdistribusi secara seragam. Turbin yang jenis ini umumnyan digunakan untuk kepentingan industri. Kecepatan uap yang mengalir pada turbin (yang biasanyan nekatingkat)  lebih rendah yaitu sekitar 100 – 200 m/detik.





BAB III
PENUTUP
A.  Kesimpulan
            Turbin uap merupakan suatu penggerak mula yang mengubah energi potensial uap menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanis dalam bentuk putaran poros turbin. Poros turbin dihubungkan dengan yang digerakkan, yaitu generator atau peralatan mesin lainnya, menggunakan mekanisme transmisi roda gigi.

B.  Saran
1)      Untuk Pendidik
Perkembangan ilmu pengetahuan dan teknologi dewasa ini sangatlah pesat, oleh karena itu, sebagai seorang pendidik diharapkan untuk selalu update dengan ilmu pengetahuan dan teknologi di masa kini. Sehingga dalam memberikan pelajaran akan lebih mengena terhadap duniamasa kini.
2)      Untuk Peserta Didik
Sumber bahan belajar tidaklah cukup di dalam kelas saja, harapannya makalah ini bisa dijadikan sebagai salah satu sumber belajar yang selanjutnya bnisa bermanfaat bagi kita semua.
3)      Untuk Khalayak Umum
Belajar tidaklah hanya monoton di dalam kelas saja. Makalah ini ditulis dengan salah satu tujuan agar bisa dipakai oleh semua manusia termasuk di dalamnya yang belum mendapatkan kesempatan untuk mengenyam pendidikan di dalam kelas. Sehingga harapannya makalah ini juga dapat dimanfaatkan untuk menambah pengetahuan bagi semua orang.


DAFTAR PUSTAKA